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Effects of bead-bead interactions on the static and dynamical properties
of model polymer solutions
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~Received 22 February 1999!

The effects of segment-segment interactions on the static and dynamical properties of model polymer
solutions are examined by Brownian dynamics simulations in the free-draining limit over a wide concentration
range. A bead-and-spring model is used to describe the polymer chains at a coarse-grained level, in which
segment-segment interactions are represented by a bead-bead pair potential with a Gaussian analytic form,
buev(r )5A exp(2r2/2s2), whereb51/kBT andA ands are characteristic energy and distance scales, respec-
tively. The chain dimensions, self-diffusion coefficient, and viscosity of the systems are studied as functions of
number density of beads of the system,r, at given excluded-volume potential parameters,A ands. Our results
show that in the limit of infinite dilution even for short chains (N;10) there is statistically significant scaling
behavior in the static and dynamical properties. For a system with given values ofA and s the change in
polymer coil size shows a realistic trend as the concentration of the system increases. In the dilute and
concentrated regions the coil size decreases as a result of increasing interchain repulsions, while in the highly
concentrated region the coil size increases again, showing a return to Rouse-like behavior because the in-
trapolymer and interpolymer segment-segment interactions become effectively indistinguishable for an arbi-
trary bead and to a large extent are ‘‘balanced out.’’ In the limit of infinite dilution, the self-diffusion coeffi-
cient of the center of mass,Dcm, depends onN only and not on the potential parameterA, while in contrast the
specific viscosityhsp depends on bothN andA. As the concentration increasesDcm decreases andhsp increases
consistent with the behavior of real polymers. When the system becomes highly concentrated, however, both
Dcm andhsp unrealistically return to the Rouse limit. This suggests that from the concentrated region upward
in concentration, the entanglement or the topological constraints caused by the physical connectivity of the
chains significantly influence their dynamical behavior. The mean-field segment-segment interactions or
excluded-volume effects incorporated in the current coarse-grained bead-spring approach cannot capture this
entanglement effect, and therefore give rise to unrealistic dynamical behavior in the concentrated regime.
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I. INTRODUCTION

Polymer chains in solution exhibit many interesting stru
tural and rheological features in different concentration
gions. Experiments show that despite the complexity of po
mers and a wide variation in atom-level detail, the
macroscopic/coarse-grained behavior follows universal s
ing laws @1–6#. This is the case even for biopolymers th
have more specific interactions between the backbone
side chains of the molecule than synthetic polymers@7–9#.
Based on the observation that the macroscopic behavio
polymer molecules is dominated by a characteristic len
scale of the molecule, various scaling theories have b
proposed that give coarse-grained predictions for struct
and dynamical properties in different concentration regio
@10–13#, and which have been confirmed to a large extent
both experiment@14–17# and computer simulation@18–25#.
While the properties of polymer chains at infinite dilutio
and in the melt state have often been simulated, there
need for similar studies in the intermediate region for so
tions, where the correlation length of density fluctuations
comparable to the coil size of the polymers, and also
higher concentrations approaching the melt limit. In th
study we have carried out Brownian dynamics simulatio
for a system of bead-and-spring chains in this concentra
PRE 601063-651X/99/60~5!/5757~11!/$15.00
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range as well as at infinite dilution.
The physical properties of a polymer solution are det

mined by at least four features of the polymer molecules:~a!
the connectivity of the backbone,~b! the segment-segmen
interactions,~c! the hydrodynamic interactions~HI! between
polymer segments and solvent molecules, and~d! the un-
crossability of the chains, which cause entanglement at
molecular level. While it could reasonably be argued th
many-body hydodynamic interactions can be neglected
high concentrations and entanglement in dilute solution,
connectivity of the backbone and the segment-segment in
actions are effective throughout the whole concentration
gion. In this study we have focused on the connectivity a
the segment-segment interactions to investigate their co
bution to both structural and dynamical properties of po
mer chains in solution. Also, the absence of true molecu
level topological entanglement in our model allows us
draw some conclusions as to its possible consequences

The simplest model to describe the connectivity of a po
mer chain is the Rouse model@26#, in which a polymer chain
is described in terms of a set ofN beads linked sequentially
by N21 linear springs with a potentialbu( l)5 3

2 l 2, where
b51/kBT andl is the spring bond vector between two linke
beads. Although the spring potentials enable correla
movements of the beads along the chain, the beads are
physically linked and the chains can cross each other fre
5757 © 1999 The American Physical Society
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5758 PRE 60C. XIAO AND D. M. HEYES
Excluded volume~EV! has been introduced in the form o
bead-bead interactions to prevent two beads from occup
the same space@27–29#. However, the way the EV potentia
is defined means that it reflects both the chain chemistry
the solvent quality,Fev5F01Fm , whereF0 is the repulsive
force between any two unlinked beads when the chains a
vacuum andFm is the solvent mediation force caused by t
bead-solvent interactions when the chains are immersed
solvent. Obviously,F0 depends on the molecular details
the chain. The stronger theF0 , the stiffer the chain.Fm de-
pends on the affinity of the chains towards the solvent. If
bead-solvent interactions tend to pull the beads apart,Fm is
repulsive; otherwise it is attractive. The total force, the
called ‘‘excluded-volume force,’’ determines the quality
the solvent for a given polymer. In a good solvent,Fev.0
and the repulsions keep the beads further apart than for
Rouse chains. In a bad solvent,Fev,0 and the beads ar
forced together, causing the chains to tend to collapse. Inu
solvent, Fev50, there are no net forces between unlink
beads, and the chains reduce to Rouse chains. The co
quences of the total forceFev is called the excluded-volum
~EV! effect.

The EV force plays an important role in polymer sol
tions and this can be represented by a simple pair pote
between the beads. From a theoretical point of view,
effects of the analytical form of the EV potential on th
structural and dynamical properties of these systems
largely unknown. In this work we propose a model EV p
tential and have carried out Brownian dynamics~BD! simu-
lations on these model polymer solutions to examine its
fect on the behavior of polymer chains in solution. W
explore the statistical distribution of the chain segments,
diffusion coefficient of the center of mass, and the viscos
We have investigated a wide concentration range span
either side of the chain overlap concentration,r* , which we
will define precisely below.

II. THEORETICAL BACKGROUND

Consider a solution ofNch bead-spring chains in a volum
V with spring potentialusp(D l) and EV potentialuev(r ). Let
l be the spring bond vector between any two linked beadr
the distance between any two unlinked beads, andD l5 l
2 l0 , with the subscript 0 indicating the natural state of t
spring. The number density of the chains in the system
rch[Nch/V and the number density of beads isr
[NNch/V, whereN is the number of beads per chain.

In a u solvent, if the many-body hydrodynamic intera
tions ~MHI ! are neglected, the chains behave like Rou
chains. In a good solvent, however, the EV interactions
influential. At extreme dilution, the chains are essentia
isolated, and therefore intrachain EV effects dominate,
though chains do interact occasionally because of their o
structure. The intrachain EV effect pushes the beads a
from each other, causing the chain to swell. The chains fo
larger coils than in au solvent. As the solution become
more concentrated, the chains increasingly interact with
interpenetrate each other so that the interactions betwee
beads from different chains become more important. For
bead on a given chain it increasingly experiences the eff
of beads from other chains. As a result, the intrachain
g
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effect becomes less important and the chains shrink. W
the system becomes highly concentrated, the system is m
homogeneous and the density fluctuations decrease in m
nitude. On average, the forces on each bead tend to bal
out because of the high level of occupation of the first co
dination shell. The beads begin to lose awareness of the
nectivity of the chains since, because the beads are pa
closely together, it is difficult for any particular bead to di
tinguish which chains other beads belong to. The net fo
on a given bead exerted by the surrounding beads tend
zero and the chains become, in the limit of the melt, Rou
like chains again.

We will term the region where intrachain repulsion
dominate as ‘‘dilute,’’ the region where interchain repulsio
dominate as ‘‘concentrated,’’ and the region where intra
hain and interchain repulsions are undistinguishable
‘‘highly concentrated.’’ In the beginning of the concentrate
range, there is a region where the chain densityrch is still
very low despite the high bead densityr. This region is
called ‘‘semidilute.’’ The longer the chains, the more e
tended the semidilute region.

We can define an overlap density,

r* [
N

4
3 pRgyr

3

whereRgyr is the root-mean-square radius of gyration of t
polymer chains atr* ~which is quite close to the infinite
dilution value!. This is the number density of beads whe
chains start to overlap, providing a geometrical prescript
for the transition from dilute region to concentrated regio
The open structure of the chain molecules ensures that o
the system leaves the limit of infinite dilution, the intercha
interactions gradually increase so thatr* does not represen
a phase transition.

There are various theories attempting to explain the
havior of polymer solutions in these different concentrati
ranges. While theories for infinite dilute systems and
melt are very successful, more needs to be done for the
centrated region. We summarize here some established
ing laws so that we can conveniently compare our simulat
results with them@30#. We denote the root-mean-squa
bond length (̂l 2&)1/2 asb, and the position vector of beadj
asRj . In the limit of infinite dilution we have the following
relations. The mean-square distance between any two b
m andn on the same chain,Smn

2 , is

Smn
2 [^~Rn2Rm!2&}um2nu2nb2, ~1!

wheren is an exponent that depends on the solvent qua
The mean-square radius of gyration,Rgyr

2 , is

Rgyr
2 [

1

N (
j 51

N

^~Rj2Rcm!2&}N2nb2 ~2!

whereRcm is the position of the center of mass of the cha
defined by

Rcm[
1

N (
j 51

N

Rj . ~3!
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Turning now to dynamical properties, the self-diffusio
coefficient for the center of mass of the chain,Dcm, is

Dcm[ lim
t→0

1

6t
^@Rcm~ t !2Rcm~0!#2&}N2nD, ~4!

wherenD is a characteristic exponent forDcm. Let h be the
viscosity of the solution andhs that of the pure solvent. Fo
the intrinsic viscosity,@h#, we have

@h#[ lim
r→0

h2hs

hsr
}Nnhb2, ~5!

wherenh is the associated scaling exponent. The values
these exponents in some well defined limits are as follow

n5 H0.5, Rouse chains~u solvent!
0.588, self-avoiding chains~good solvent!; ~6!

nD5 H 1, Rouse model
n, Zimm model, ~7!

nh5 H1, Rouse model
3n21, Zimm model. ~8!

The above results are calculated from self-avoid
chains, for which the EV potential is taken as a delta fu
tion. In a u solvent, self-avoiding chains become Rou
chains. If we take into account many-body hydrodynam
interactions in self-avoiding chains, we obtain the Zim
model @31#. It is important to include MHI effects to obtain
realistic values for the dynamic scaling exponentsnD and
nh . If we take the value 0.6 forn, the Zimm model values
agree well with those obtained for real polymers, i.e.,nD
50.5,nh50.5 in au solvent andnD50.6,nh50.8 in a good
solvent. However, the values of the static scaling exponen
agree well with real polymers under different solvent con
tions without the need for MHI in the model.

In concentrated solutions, the situation becomes m
complicated. Since the concentration fluctuations are
large and the correlations between segments are stron
polymer solution in the concentrated region assumes crit
behavior. The influence of the number density of beadsr on
the static and dynamic properties of the polymer solution
be analyzed using scaling arguments that in a good sol
give the following predictions for the density dependence
the static and dynamical properties@13,30#:

agyr[
Rgyr~r!

Rgyr~0!
}S r

r* D k

, ~9!

acm[
Dcm~r!

Dcm~0!
}S r

r* D kD

, ~10!

h r[
h~r!

hs
}S r

r* D kh

, ~11!

where k5(122n)/2(3n21), kD5(22n)/(3n21), and
kh53/(3n21). For n50.6 we have k520.125, kD
521.75, andkh53.75, respectively.
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III. SIMULATION AND MODEL DETAILS

Our model system consists ofNch linear spring-and-bead
chains each withN identical beads. The position vector for
beadj is Rj , the spring bond vector between any two linke
beads islk[Rk112Rk , and the distance between any tw
unlinked beads isrmn[Rn2Rm . We assume that the
Brownian forces acting on the beads are uncorrelated
therefore the long-time dynamics of the beads satisfy
position Langevin equation@32,33#. Neglecting many-body
hydrodynamic interactions, we have for beadj a bead posi-
tion update scheme in a form convenient for simulation@34#,

Rj~ t1Dt !5Rj~ t !1Fj~ t !
Dt

z
1DRj

G~ t !, ~12!

wherez is the friction coefficient of the bead characterizin
the bead-solvent interaction, andDRj

G is a random Brownian
displacement acting on beadj taken from a Gaussian random
number generator. The thermodynamic or excluded-volu
forceFj on a bead is determined by the potential field of t
system, which here has two parts—the sum of the spr
forces from the two beads linked to it and the sum of the
forces from all the unlinked beads around it.

Two analytic forms of spring potential were used in o
simulations. For the class of systems denoted by the key,F0,
we used a linear spring with zero natural length i.e.,l 0
50.0 so thatD l 5 l and the interaction potential was,

bu~ l !5
H

2
l 2, ~13!

whereH is a characteristic energy. This is the spring pote
tial used in the Rouse model. For the class of systems
noted byF1, we use a finitely extendible nonlinear elas
~FENE! spring model@35# that has a nonzero equilibrium
natural lengthl 0 and a maximum extensionD l max,

bu~D l !52
H

2
D l max

2 lnS 12
D l 2

D l max
2 D , ~14!

where D l 5u l2 l0u. We used the valuesH53.0 andD l max
53.0l 0 in this study. The FENE spring potential forF1 sys-
tems guarantees that the springs do not get overstretche
high concentrations. In the limitD l→0 the FENE potential
reduces to a linear harmonic spring interaction potent
bu(D l )5 3

2 D l 2.
Turning now to the nonbonded interaction, the EV pote

tial we used had a Gaussian analytical form,

buev~r !5H Ae2r 2/2s2
, r ,4s

0, r>4s,
~15!

wheres sets the range of the potential andA the energy scale
or strength of the interaction. Despite this seemingly ar
trary choice, it is a plausible potential form, since it allow
for progressively more difficult interpenetration of the bea
as the values ofA and s increase. The barrier height atr
50 is finite, however. This is a realistic feature, becau
each bead represents a substantial section of a polymer c
The dimensionless exponential prefactorA reflects the qual-
ity of the solvent.A<0 represents a system of polym
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5760 PRE 60C. XIAO AND D. M. HEYES
chains in a bad solvent,A50 the chains in au solvent, and
A.0 the chains in a good solvent.

The strength and the interaction range of the spring
tential and the EV potential~on the left! are shown in Fig. 1.
We can see that the FENE potential prevents the bead-
bond length from becoming too elongated.

From the positions and forces we can calculate the s
cific viscosity of the system using the appropriate Gre
Kubo formula@36#,

hsp[
h2hs

hs
5

b

hsV
E

0

`

@^Jab~0!Jab~ t !&

2^Js
ab~0!Js

ab~ t !&#dt, ~16!

where V is the volume of the system andJab is an off-
diagonal component of the momentum flux tensorJ which is
related to the pressure tensorP by J5VP. The ~s-s! integral
involving the second term on the right-hand side represe
the contribution from the solvent alone. There are polym
and solvent contributions toJ so that, decomposed into it
components,

^Jab~0!Jab~ t !&5^Jp
ab~0!Jp

ab~ t !&1^Jp
ab~0!J0

ab~ t !&

1^J0
ab~0!Jp

ab~ t !&1^J0
ab~0!J0

ab~ t !&.

~17!

The subscripts indicates the momentum flux from th
pure solvent,p the contribution from the polymer potentia
parts, and 0 the contribution from the solvent part. Only
first ~p-p! polymer contribution in Eq.~17! is important in
this context, since we assume in our model that there is
correlation between the polymer and the solvent. Theref
the ~p-0! and ~0-p! terms are statistically zero. Also, we ca

FIG. 1. Range and strength of the spring potentialusp(D l ) and
the EV potentialuev(r ), whereD l 5 l 2 l 0 , l is the distance betwee
two linked beads,l 0 the natural length of the spring, andr the
distance between two unlinked beads. The dashed line is the F
spring potential defined by Eq.~14! with H53.0, D l max53.0, and
l 051.0. It reduces tousp(D l )51.5kBT(D l )2 at D l 50 represented
by the dot-dashed line. The solid lines represent the EV poten
defined by Eq.~15! with s50.25 at different values ofA. Energy is
in kBT and the distances are inl 0 or b.
-
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assume the~0-0! and~s-s! correlation functions are identica
We therefore have only the~p-p! term left, which dominates
anyway with increasing concentration, since it is the m
slowly decaying correlation function@37,38#,

hsp5
b

hs
E

0

`

G~ t !dt, ~18!

where the correlation function is

G~ t ![
1

V
^Jp

ab~0!Jp
ab~ t !&, ~19!

with

Jp
ab5(

i
(
j Þ i

r i j af i j b , ~20!

f i j being the force exerted on beadi by beadj andr i j a being
the a component of the pair separationr i j .

IV. COMPUTATIONAL DETAILS

BD simulations were carried out for bothF0 and F1
systems with varying EV strengthsA, different chain lengths
N, and at a series of concentrations. During the simulat
the following quantities were set to unity for computation
convenience: the thermal energykBT, the friction coefficient
z, mass of the beadm, viscosity of the solvenths , the root-
mean-square bond lengthb of the Rouse chain, and the natu
ral spring bond lengthl 0 for the F1 potential model. All
other quantities are in reduced units. In such a case, the
step for the simulation is proportional to the mean-squ
random displacement of a bead,

Dt5
1

2
^~DRia

G !2&. ~21!

After several exploratory simulations, we cho
^(DRia

G )2&50.05 for most of the concentrations. Howeve
for highly concentrated systems, i.e.,r.35.0, ^(DRia

G )2&
50.04 was used to employ smaller time steps. The num
of chains in the system was typicallyNch520 for dilute sys-
tems and set to different values fromNch540 to Nch5200
for concentrated systems. A typical simulation that gave
equate statistics lasted for about four million time steps.

V. RESULTS AND DISCUSSION

Our model EV potential given in Eq.~15! had two adjust-
able parameters, which we call the affinity factorA and the
potential ranges. The former determines the quality of th
solvent and the latter determines, among other things,
stiffness of the chain. To examine the behavior of flexib
chains in solutions of finite concentration, we need to ma
sure that the parameters are suitably chosen so that our
tem represents flexible chains in a good solvent. We car
out exploratory simulations in the limit of infinite dilution to
determine these parameters. Also, an appropriate value oN,
the number of beads per chain, had to be chosen such tha
chains were polymerlike and yet not too computationally e
pensive to calculate.
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The value of the scaling exponentn in Eq. ~2! reflects the
stiffness of the chain. In a good solvent,n.0.8, indicates a
stiff chain. We performed a number of simulations using
modelF0 potential type with differentA ands values. The
values of the scaling exponentn obtained from these simu
lations with the different potential parameters are listed
Table I. In au solvent, the calculated value ofn was, within
statistical uncertainty, the Rouse value of 0.5, as expec
For s50.25, as the affinity factorA increases from 1.0 to
75.0, the value ofn increased from 0.56 to 0.63, reflectin
the behavior of flexible chains as the quality of the solv
improves. For the caseA51.0 and s51.0 we haven
50.794, which indicates that the chains were relatively st
The effect ofs on the scaling behavior is shown clearly
Figs. 2~a! and 2~b!. We useds50.25 in all subsequent simu
lations to ensure sufficiently flexible chains throughout t
study.

In the following sections we first look at the influences
solvent quality and chain length on the properties of
polymer coils in the limit r→0. Then we examine the
changes in these model polymer solutions brought abou
increasing concentration.

A. Behavior at infinite dilution

In the limit of infinite dilution, i.e.,r→0, there are no
interactions between unlinked beads underu conditions and
a flexible polymer chain therefore assumes a Gaussian
formational distribution between any two beadsm andn on
the chain. In a good solvent, sincer→0, there are no inter-
chain excluded-volume interactions so that in this limit t
deviation from the Gaussian chain behavior is caused so
by intrachain EV interactions. These intrachain EV rep
sions push the beads further apart so that the chains
larger coils than in au solvent. The longer the chain, th
more pronounced this intrachain EV effect. Figures 3~a! and
3~b! show the distribution of the radius of gyration,W(Rgyr),
as a function of chain length for both systems underu and
good solvent conditions. For a given polymer the coil size
a good solvent is larger than in theu solvent. This difference
in size is enhanced as the number of beads per chainN in-
creases, since the longer chains presumably have gr
scope for expansion. These effects are also clearly show
the data listed in Table II.

First we look at the simulation results of the root-mea
square~rms! bond lengthb, listed in Table II. In au solvent
~i.e., A50.0! the quantityb is independent ofN for both
classes of systems. We foundb51.00360.001 for theF0
series andb51.53560.001 for theF1 series. As the quality

TABLE I. The scaling exponentnh defined in Eq.~5! for the
systems ofF0 spring potential Eq.~13! with different values ofA
ands.

A s n

0.0 0.00 0.50060.005
1.0 0.25 0.55960.005
8.0 0.25 0.59760.005

75.0 0.25 0.63460.005
1.0 1.00 0.79460.005
e

n

d.

t

.

s

e

y
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-
rm

n

ter
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of the solvent became better, i.e., asA increased, the intra-
chain EV repulsions caused the springs to expand sligh
The larger the value ofA the greater the elongation and als
for a given value ofA, the elongation increased with cha
length,N. Nevertheless, on the whole, the increase in bo
lengthb was small, i.e.,,8% for theF0 series and,3% for
theF1 series. This suggests that theF1 spring potential was
a more realistic representation of the polymer than the Ro
interactions, presumably because segments of a real poly
chain are not so easily deformed.

Within the statistical uncertainty, the results of our sim
lations are in agreement with the scaling laws@Eqs.~1! and
~2!# that describe the dimensions of the polymer coils in
limit of infinite dilution. The reduced quantities that repr
sent the chain dimensions areSee* [See/b, Sme* [Sme/b, and
Rgyr* [Rgyr /b. These quantities for various system para
eters are listed in Table II, as well as the scaling exponen
calculated from them. The average deviation for the val
of these quantities obtained from simulation is60.006. Fig-

FIG. 2. Effects ofuev(r ) with different A ands on the scaling
behavior of theF0 system in the limitr→0. ~a! Root-mean-square
distance between two beadsm andn on the same chain,Smn , as a
function of um2nu; ~b! Radius of gyrationRgyr as a function of
number of beads per chain,N.
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ures 2~a! and 4~a! give the root-mean-square distance b
tween the two beadsm and n, Smn , as a function of
un2mu, i.e., for end-to-end distanceSeeun2mu5N21 and
for middle-to-end distanceSmeun2mu5N/221. Figures 2~b!
and 4~b! show the root-mean-square radius of gyration a
function of N.

For the system of typeF0 with N54, the reduced middle
to-end distanceSme* decreased slightly as the solvent beca
better, which indicates that the chain was perhaps too s
for the observance of true scaling behavior, and therefore
calculatedn only using systems withN>8. For theF0 series
the values ofn calculated fromSee* and Sme* are statistically
indistinguishable, while the values ofn calculated fromRgyr*
are somewhat larger, e.g., for theF0 system withA58.0 we
found n50.597 fromRgyr* but n50.572 fromSee* . We as-
sume that this difference is caused by the limited value of
chain lengthN. As the chains became longer the differen
between then values calculated fromSee* and fromRgyr* was
reduced, as was the case ofF1 series. Also for theF1 series
in good solvents, as the chains became longer then values
calculated fromSee* were seen to be larger than those calc

FIG. 3. Swelling of the polymer chains in a good solvent
represented by the probability distribution of the radius of gyrati
W(Rgyr), as a function of number of beads per chain,N, in different
solvents.~a! F0 system and~b! F1 system.
-
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lated fromSme* , which seems to suggest that this end-ch
effect is more pronounced in a good solvent.

We will use the average of then values determined by
Sme* , See* , and Rgyr* as the index for solvent quality. In au
solvent, for bothF0 andF1 systems, the average value ofn
is 0.50060.003, indicating Rouse behavior. As the affini
factor A increases we find thatn increases above 0.5, ind
cating a better solvent. TheF0 system withA58.0 gives a

,

TABLE II. The scaling exponentn defined in Eqs.~1! and ~2!
calculated from the reduced chain dimensions.b is the root-mean-
square bond length and the reduced quantities are defined bSee*
[See/b, Sme* [Sme/b, andRgyr* [Rgyr . r represents the correlatio
coefficient of the power-law regression.

F0 N 4 8 12 16 20 n r

A50.0 b 1.002 1.002 1.002 1.003 1.004
See* 1.732 2.664 3.321 3.872 4.356 0.500 0.99
Sme* 1.000 1.731 2.232 2.669 2.972 0.497 0.99
Rgyr* 0.790 1.144 1.408 1.635 1.803 0.500 0.99

A51.0 b 1.010 1.016 1.019 1.021 1.022
See* 1.748 2.722 3.464 4.097 4.658 0.531 0.99
Sme* 0.995 1.756 2.299 2.752 3.154 0.533 0.99
Rgyr* 0.795 1.170 1.459 1.738 1.930 0.555 0.99

A58.0 b 1.031 1.045 1.049 1.051
See* 1.797 2.905 3.769 4.514 0.572 0.999
Sme* 0.992 1.816 2.435 2.961 0.571 0.999
Rgyr* 0.808 1.227 1.560 1.851 0.597 0.999

A575.0 b 1.058 1.080 1.082
See* 1.860 4.093 4.929 0.606 0.999
Sme* 0.982 2.578 3.171 0.601 0.999
Rgyr* 0.826 1.662 1.987 0.634 0.999

F1 N 12 24 36 n r

A50.0 b 1.534 1.534 1.536
See* 3.327 4.763 5.945 0.500 0.999
Sme* 2.237 3.290 4.123 0.498 0.999
Rgyr* 1.412 1.988 2.454 0.502 0.999

A58.0 b 1.545 1.552 1.555
See* 3.529 5.316 6.682 0.552 0.999
Sme* 2.322 3.584 4.564 0.552 0.999
Rgyr* 1.480 2.180 2.728 0.557 0.999

A516.0 b 1.555 1.556 1.560
See* 3.605 5.448 7.010 0.573 0.999
Sme* 2.357 3.657 4.712 0.565 0.999
Rgyr* 1.504 1.227 2.835 0.576 0.999

A525.0 b 1.556 1.559 1.563
See* 3.639 5.518 7.149 0.581 0.999
Sme* 2.372 3.696 4.795 0.574 0.999
Rgyr* 1.516 2.255 2.883 0.584 0.999

A530.0 b 1.557 1.560 1.564
See* 3.661 5.578 7.199 0.583 0.999
Sme* 2.383 3.727 4.827 0.576 0.999
Rgyr* 1.523 2.272 2.903 0.586 0.999

A550.0 b 1.560 1.563 1.568
See* 3.699 5.656 7.339 0.590 0.999
Sme* 2.400 3.772 4.916 0.584 0.999
Rgyr* 1.535 2.300 2.952 0.594 0.999



ol

-

in

cen-

.
-
e
e

ows

-
nite
is

the

as

PRE 60 5763EFFECTS OF BEAD-BEAD INTERACTIONS ON THE . . .
reasonably good solvent with an averagen50.5860.01. The
F1 system, usingA525.0 also gives a reasonably good s
vent with an averagen50.5860.01. Close tou conditions a
small increase inA improves the solvent quality signifi

FIG. 4. Effects ofuev(r ) with s50.25 and different values ofA
on the scaling behavior of theF1 system in the limitr→0. ~a!
Root-mean-square distance between two beadsm andn on the same
chain,Smn , as a function ofum2nu; ~b! Radius of gyrationRgyr as
a function of number of beads per chain,N.

FIG. 5. Mean-square displacement of the center of m
^@Rcm(t)2Rcm(0)#2& as a function of timet for anF0 system with
A58.0 and anF1 system withA525.0 for different values ofN.
-

cantly, while in the good solvent range a similar increase
A causes only a small increase in the value ofn.

Figure 5 shows the mean-square displacement of the
ter of masŝ @Rcm(t)2Rcm(0)#2& as function of time for two
different systems,F0 with A58.0 andF1 with A525.0.
The self-diffusion coefficientDcm was calculated from Eq
~4! and they show aDcm}N21 dependence for all the sys
tems. The values ofDcm obtained from the simulations ar
listed in Table III. In au solvent, because we are in th
free-draining limit, ñD takes the form 1/N, the value of
Rouse chains, as expected. Significantly, this data also sh
that solvent quality does not influence thisN21 dependence.
Moreover, despite the fact that the bond lengthb of F1 sys-
tem is longer than that ofF0 system with the sameN, the
value of Dcm for the two systems are, within statistical un
certainty, the same. These results show that in the infi
dilution limit the diffusion behavior of the center of mass
independent of the interaction law between the beads.

The scaling relations between intrinsic viscosity@h# and
number of beads per chainN given by Eq.~5! for different
interaction parameters are shown in Fig. 6. The values of

s
FIG. 6. The intrinsic viscosity@h# as a function ofN in different

solvents for bothF0 andF1 systems.

TABLE III. The diffusion coefficient of the center of massDcm

defined by Eq.~4! as a function ofN andA. Dcm
RS51/N is the Rouse

value.

F0 N 4 8 12 16 20

Dcm
RS 0.250 0.125 0.0833 0.0625 0.0500

A50.0 0.256 0.127 0.0832 0.0628 0.0496
A51.0 0.250 0.126 0.0837 0.0619 0.0497
A58.0 0.251 0.131 0.0841 0.0631
A575.0 0.245 0.0840 0.0624

F1 N 12 24 36

Dcm
RS 0.0833 0.0417 0.0278

A58.0 0.0838 0.0419 0.0281
A516.0 0.0829 0.0423 0.0288
A525.0 0.0836 0.0416 0.0275
A530.0 0.0832 0.0417 0.0279
A550.0 0.0833 0.0419 0.0285
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scaling exponentnh were calculated and they are listed
Table IV. The scaling exponentnh>1, which is expected
since we are in the free-draining limit. Although the absolu
values ofnh are therefore physically unrealistic, it is inte
esting to look at the quantityDnh[nh2nh(u). For flexible
real polymersnh varies in the range 0.5–0.8 in good solven
with nh(u)50.5 in u solvent, therefore givingDnh in the
range 0.0;0.3. Our results for both series fall in this rang
which suggests that in the infinite dilution limit the quanti
Dnh is only weakly dependent on the presence of ma
body hydrodynamic interactions, and the MHI contributi
to nh from a polymer chain in a good solvent is the similar
that for a polymer in au solvent.

B. Behavior at finite concentrations

At finite polymer concentration, the interchain EV forc
become increasingly important. There are three distingu
able regimes. In the dilute region, because of the interch
repulsions, the polymer chains avoid overlap on approach
shrinking into slightly smaller coils. As a result, the pol
mers behave like isolated coils that only interact occasi
ally. In the concentrated region, the system becomes m
crowded and the coils are forced to overlap for extend
periods. They begin to interpenetrate, which reduces the
effect of the intrachain repulsion energy. In the highly co
centrated region, the density fluctuations are greatly s
pressed and each bead is surrounded by an increasing
ber of beads from other chains, reducing its ability
distinguish between beads from the same chain and th
from other chains. The segment-segment interactions ten
become ‘‘balanced out’’ so that when the system reaches
melt state the chains become conformationally ideal ag
Our simulation results show these three concentration

TABLE IV. The scaling exponentnh defined in Eq.~5! for the
intrinsic viscosity.Dnh5nh(A)2nh(0).

F0 F1
A nh Dnh A nh Dnh

0.0 1.01 0.00 0.0 0.99 0.0
1.0 1.14 0.13 8.0 1.18 0.19
8.0 1.29 0.28 16.0 1.26 0.27

75.0 1.41 0.40 25.0 1.28 0.29
30.0 1.29 0.30
50.0 1.31 0.31
e
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gions clearly, and below we demonstrate how the key pr
erties change as functions of concentration. However,
must bear in mind that in our model the entanglement eff
~which is caused by physical connectivity of the beads o
chain! is not included completely and in the highly conce
trated region we expect the polymers to behave like Ro
chains, which is acceptable for the chain conformational d
tribution, but not for the dynamical properties.

1. Radius of gyration

The change in the size of a typical polymer chain as c
centration increases is conveniently characterized by the
tio agyr(r)[Rgyr(r)/Rgyr(0), which is shown as a function
of number density of beadsr in Fig. 7. First we consider the
F1 class system in a moderate solvent~i.e., A58.0!. In the
dilute region (r,2.0), the radius of gyration of the coilRgyr
drops steadily asr increases. Entering the concentrated
gion ~ca. 2.0,r,15.0!, Rgyr decreases more dramatical
and follows the scaling lawagyr}rk. In the highly concen-
trated region,r.15.0, Rgyr increaseswith r, indicating a
return to Rouse-like conformational statistics. This is t
general pattern for theF1 system in different solvents and
in fact, in better solvents~i.e., increasing magnitude ofA! the
changes are even more pronounced~e.g., forA516 and 25!
and takes place at lowerr for larger A values. For theF0
system, sincel 050, the concentrated region is more e

FIG. 7. Normalized radius of gyration agyr(r)
[Rgyr(r)/Rgyr(0) as a function of number density of beadsr in
different solvents for both theF0 andF1 systems withN512.
TABLE V. The scaling exponents ofr in the concentrated region defined by Eqs.~9!–~11! in different
solvents.r is the correlation coefficient of the power-law regression.agyr}rk, acm}rkD, h r}rkh, andhsp

}rksp.

k r kD r kh r ksp r

F0 A54.0 20.08 20.998 0.44 0.999 0.89 0.998
A58.0 20.30 0.998 20.17 0.996 0.54 0.998 0.85 0.999

F1 A58.0 20.05 20.994 20.16 20.999 0.90 0.999 1.06 0.999
A516.0 20.27 20.999 20.41 20.999 1.00 0.999 1.16 0.999
A525.0 20.32 20.999 20.77 20.996 1.17 0.999 1.26 0.998
A550.0 20.31 20.995 21.70 20.998 1.32 0.994 1.45 0.996
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tended than that of theF1 system and we do not see a
increase in the value ofagyr(r) in the density range covere
in our simulations.

Both of the potential forms,F0 and F1, show scaling
behavior in the concentrated region with the analytic for
agyr}rk. The scaling exponentk depends on solvent quality
values of which are listed in Table V. In good solvents, t
scaling theory predicts thatk5(122n)/2(3n21)521.25
@30#. Unfortunately, there are only a few experimental resu
available. Some confirm the theory@40,41#, whereas others
give a smaller valuek520.08 @42#. Our results show a
much faster decrease inRgyr as concentration increases a
the data suggest thatk'n/2'0.3. The simulations of Brow-
stow and Drewmak, also with only EV repulsion, gavek
50.2 @43#. We suggest that this more dramatic decrease
chain dimension with increasing concentration of the so
tion is caused by the lack of topological entanglement in
model. Additional topological constraints would restrict t
degree of shrinkage of the chains with increasing concen
tion.

The return to a Rouse-like chain conformational distrib
tion in the concentrated region for theF1 system can be see
in more detail in the change in the probability distributio
function ofRgyr with r as shown in Fig. 8. Asr increases the
polymer coils become smaller and the distribution cu
shifts to the left until the system enters the highly conc
trated region where the distribution curve starts to move b
to the right toward the distribution of a flexible coil in au
solvent.

The rms bond lengthb also changes with increasingr.
Table VI gives the value ofb as a function ofr for the F1
system withA525.0. As we can see,b decreases asr in-
creases, then achieves a minimum and begins to incr
again, indicating the return to Rouse chain behavior.

2. Self-diffusion coefficient

The ratio of the self-diffusion coefficient to its value
the zero density limit,acm, as a function ofr is shown in
Fig. 9. Below the highly concentrated region, asr increases,
Dcm decreases, gradually at first in the dilute region and t

FIG. 8. Distribution of the radius of gyrationW(Rgyr) as a func-
tion of r for the F1 system withA550.0 andN512.
,
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more steeply in the concentrated region, whereDcm follows
the scaling law,acm}rkD. The values of the scaling expo
nent kD obtained from the simulation data are presented
Table V. Again, the value of the exponent depends on s
vent quality, with a better solvent giving a more negati
value ofkD . In a good solvent the value ofkD predicted by
scaling theory is21.75, which has been confirmed by e
periment@44#. One of ourF1 systems withA550.0, has a
similar valuekD521.70. In the highly concentrated region
since there are no topological constraints in our systems,
value ofDcm starts to increase as a result of the decreas
impact of the EV effect, approaching the value characteri
of a Rouse chain. This unrealistic feature is again caused
the lack of physical entanglement.

3. Viscosity

The experimental results for various real polymer-solv
systems show that the relative viscosityh r can be described
by a stretched exponential function ofr, h r5exp(arx), in the
dilute region, wherea is a constant typical of each polyme
and by a power law,h r}rkh in the concentrated region@39#.
The values ofh r obtained from our simulations as functio
of the coil-overlap parameter@h#r are shown in Fig. 10. We
reproduced the experimental trends in that the data in
dilute region follow a stretched exponential form and in t
concentrated region a power law. Table V shows that
value of exponentkh depends on solvent quality. In th
highly concentrated regionh r becomes less sensitive tor.

FIG. 9. Center-of-mass self-diffusion coefficientDcm as a func-
tion of number density of beadsr in different solvents for both the
F0 andF1 systems withN512.

TABLE VI. The bond lengthb as a function ofr for the F1
system withA525.0.

r →0 0.05 0.10 0.25 0.50
b 1.5561 1.5531 1.5502 1.5410 1.5265
r 1.00 2.00 3.00 4.00 5.00
b 1.5030 1.4461 1.3510 1.2255 1.1098
r 7.00 10.00 15.00 20.00 35.00
b 0.9773 0.9261 0.6730 1.4690 1.4856
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Figure 11 shows the specific viscosity,hsp, for the F1
system withN212 as a function of coil-overlap paramete
@h#r, which is equivalent tor/r* . The thick line in the fig-
ure is the relationshiphsp5@h#r that corresponds to Rous
behavior. In the dilute region the chains behave essentiall
Rouse chains. As the solution becomes more concentra
deviations begin to occur.~The crossover point from the di
lute to the concentrated region is aboutr@h#'0.6!. In the
concentrated region the scaling law is found to behsp
}(@h#r)ksp. The values ofksp obtained from the simulation
data are given in Table V. The better the solvent the lar
the value ofksp, although these values are much smal
than the value 3/3n2153.75 predicted by scaling theor
@30#. In the highly concentrated regionhsp decreases, as th
net effects of the excluded-volume repulsion decreases,
we return to Rouse-like behavior.

The effect of excluded-volume forces on the viscosity
the solution can be seen in the quantity,hev, a measure of
the excluded-volume contribution to the viscosity,

hev[~hsp2hsp
RS!/r@h#, ~22!

FIG. 10. Relative viscosityh r as a function of coil-overlap pa
rameterr@h# for the F1 system withN512 in different solvents.

FIG. 11. Specific viscosityhsp as a function of coil-overlap
parameterr@h# for an F1 system withN512 in different solvents.
as
d,

r
r

nd

f

where the Rouse valuehsp
RS5Nb2/36. Since the bond length

b is a function ofr, hsp
RS also depends onr. Figure 12 shows

hev as function of the coil-overlap parameter. In the dilu
region the interchain EV forces are small and the viscosity
the system is close to the Rouse value. In the concentr
region the interchain EV forces dominate and the viscos
increases markedly with density. As the systems beco
highly concentrated, the net effects of the EV forces begin
disappear and viscosity decreases toward that of the R
chain again. This latter unrealistic feature is again caused
partially neglecting the topological constraints of the cha
using this coarse-grained model.

VI. CONCLUSIONS

A model excluded-volume potential of the formbuev(r )
5A exp(2r2/2s2) with s50.25 and various values ofA is
shown to give a reasonable description of the segm
segment interactions for flexible polymers in solution ove
wide concentration range. The simulation results give a c
picture of how the segment-segment interactions contrib
to both static and dynamical properties of a model polym
solution and how these properties change as the system
comes increasingly concentrated. Comparisons with exp
ments reveal the strengths and limitations of our model.

In the limit of infinite dilution the static and dynamica
properties agree quite well with theoretical predictions.
addition, the model exhibits the correct behavior for t
chain dimensions in the whole concentration range asr in-
creases. In the dilute region the coil size decreases slowl
the concentrated region the shrinkage of the coil follow
scaling law, and in the highly concentrated region the c
size begins to increase again. The dynamical properties
self-diffusion coefficient of the center of mass,Dcm, the
relative viscosityh r , and the specific viscosityhsp also
show the correct trends in both dilute and concentrated
gions. In the highly concentrated region, however, there
return to Rouse-like behavior—which is not realistic. This
a deficiency of the coarse-graining procedure which we s
gest fails to capture important aspects of the polymer

FIG. 12. EV contribution to viscosity,hev, defined by Eq.~23!,
as a function of coil-overlap parameterr@h# for theF1 system with
N512 in different solvents.
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tanglement, which would require a model including physi
connectivity of the beads.

We conclude that the coarse-grained segment-segmen
teractions capture quite well the static properties of real po
mer chains in the whole concentration range. Although
contraction of polymer coils in the concentrated region in o
model is more extreme than in a real polymer solution. T
indicates that in the concentrated region the topological c
straints or entanglements of chains present should res
significantly the decrease of coil size with increasing conc
tration, which will limit the ability of the polymer molecule
to contract to avoid the interchain excluded volume rep
sions.

The entanglement effects influence the dynamical beh
ior of the chains in the concentrated region and domin
those in the highly concentrated region. In real polymers
entanglement makesDcm decrease more dramatically wit
increasing concentration. It also makeshsp increase faster in
the concentrated region and keep increasing in the hig
concentrated region. Clearly, excluded-volume aspects o
present model do not represent the real entanglement ef
le

ol-

hy
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originating in the uncrossability of the chains, which dom
nates the dynamical behavior in the very concentrated s
Nevertheless, our model does have many satisfactory
tures, bearing in mind its simplicity and computational ef
ciency, and should form the basis for future refinements.
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