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The effects of segment-segment interactions on the static and dynamical properties of model polymer
solutions are examined by Brownian dynamics simulations in the free-draining limit over a wide concentration
range. A bead-and-spring model is used to describe the polymer chains at a coarse-grained level, in which
segment-segment interactions are represented by a bead-bead pair potential with a Gaussian analytic form,
Buefr)=A exp(-r?20?), whereB=1/kgT andA ando are characteristic energy and distance scales, respec-
tively. The chain dimensions, self-diffusion coefficient, and viscosity of the systems are studied as functions of
number density of beads of the systemat given excluded-volume potential parametérando. Our results
show that in the limit of infinite dilution even for short chaind{ 10) there is statistically significant scaling
behavior in the static and dynamical properties. For a system with given valuksanfl o the change in
polymer coil size shows a realistic trend as the concentration of the system increases. In the dilute and
concentrated regions the coil size decreases as a result of increasing interchain repulsions, while in the highly
concentrated region the coil size increases again, showing a return to Rouse-like behavior because the in-
trapolymer and interpolymer segment-segment interactions become effectively indistinguishable for an arbi-
trary bead and to a large extent are “balanced out.” In the limit of infinite dilution, the self-diffusion coeffi-
cient of the center of masB,.,,, depends oiN only and not on the potential parameggrwhile in contrast the
specific viscosityys, depends on botN andA. As the concentration increasbg,, decreases ang, increases
consistent with the behavior of real polymers. When the system becomes highly concentrated, however, both
D¢m and 7, unrealistically return to the Rouse limit. This suggests that from the concentrated region upward
in concentration, the entanglement or the topological constraints caused by the physical connectivity of the
chains significantly influence their dynamical behavior. The mean-field segment-segment interactions or
excluded-volume effects incorporated in the current coarse-grained bead-spring approach cannot capture this
entanglement effect, and therefore give rise to unrealistic dynamical behavior in the concentrated regime.
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PACS numbds): 61.25.Hqg

I. INTRODUCTION range as well as at infinite dilution.
The physical properties of a polymer solution are deter-

Polymer chains in solution exhibit many interesting struc-mined by at least four features of the polymer moleculaks:
tural and rheological features in different concentration rethe connectivity of the backbonéb) the segment-segment
gions. Experiments show that despite the complexity of polyinteractions(c) the hydrodynamic interactior(sil) between
mers and a wide variation in atom-level detail, their Polymer segments and solvent molecules, édthe un-
macroscopic/coarse-grained behavior follows universal scatrossability of the chains, which cause entanglement at the
ing laws [1—6]. This is the case even for biopolymers that molecular level. While |_t c_ould re_asonably be argued that
have more specific interactions between the backbone arfg@ny-body hydodynamic interactions can be neglected at
side chains of the molecule than synthetic polynatsd]. high concentrations and entanglement in dilute solutlon., the
Based on the observation that the macroscopic behavior gPnnectivity of the backbone and the segment-segment inter-

: : - ctions are effective throughout the whole concentration re-
polymer molecules is dominated by a characteristic Iengtﬁaion_ In this study we have focused on the connectivity and

scale of dtTr? tmo_lecule, various sgahng d.tht_eorlefs ha;/e ?eeﬁre segment-segment interactions to investigate their contri-
propose at give coarse-grainéd prediclions 1or Structurgy, ;44 poth structural and dynamical properties of poly-

and dynamical properties in different concentration regionse, chains in solution. Also, the absence of true molecular-
[10-13, and which have been confirmed to a large extent bye,e| topological entanglement in our model allows us to
both experimenf14-17 and computer simulatiofl8—29.  §raw some conclusions as to its possible consequences.
While the properties of polymer chains at infinite dilution  The simplest model to describe the connectivity of a poly-
and in the melt state have often been simulated, there is @er chain is the Rouse mod&6], in which a polymer chain
need for similar studies in the intermediate region for solu4s described in terms of a set bfbeads linked sequentially
tions, where the correlation length of density fluctuations ispy N—1 linear springs with a potentigdu(l) =212, where
comparable to the coil size of the polymers, and also aB=1/kgT andl is the spring bond vector between two linked
higher concentrations approaching the melt limit. In thisbeads. Although the spring potentials enable correlated
study we have carried out Brownian dynamics simulationamovements of the beads along the chain, the beads are not
for a system of bead-and-spring chains in this concentratiophysically linked and the chains can cross each other freely.
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Excluded volume&EV) has been introduced in the form of effect becomes less important and the chains shrink. When
bead-bead interactions to prevent two beads from occupyinthe system becomes highly concentrated, the system is more
the same spad®7-29. However, the way the EV potential homogeneous and the density fluctuations decrease in mag-
is defined means that it reflects both the chain chemistry anditude. On average, the forces on each bead tend to balance
the solvent qualityF.,=Fo+ F,,, whereF, is the repulsive out because of the high level of occupation of the first coor-
force between any two unlinked beads when the chains are idination shell. The beads begin to lose awareness of the con-
vacuum and-,, is the solvent mediation force caused by thenectivity of the chains since, because the beads are packed
bead-solvent interactions when the chains are immersed in@osely together, it is difficult for any particular bead to dis-
solvent. ObviouslyF, depends on the molecular details of tinguish which chains other beads belong to. The net force
the chain. The stronger thg,, the stiffer the chainF,, de- on a given bead exerted by the surrounding beads tends to
pends on the affinity of the chains towards the solvent. If thezero and the chains become, in the limit of the melt, Rouse-
bead-solvent interactions tend to pull the beads aparis  like chains again.
repulsive; otherwise it is attractive. The total force, the so- We will term the region where intrachain repulsions
called “excluded-volume force,” determines the quality of dominate as “dilute,” the region where interchain repulsions
the solvent for a given polymer. In a good solveR,>0  dominate as “concentrated,” and the region where intrac-
and the repulsions keep the beads further apart than for tHeain and interchain repulsions are undistinguishable as
Rouse chains. In a bad solverft,,<0 and the beads are “highly concentrated.” In the beginning of the concentrated
forced together, causing the chains to tend to collapse.din arange, there is a region where the chain dengjyis still
solvent, F,,=0, there are no net forces between unlinkedvery low despite the high bead density This region is
beads, and the chains reduce to Rouse chains. The cong@lled “semidilute.” The longer the chains, the more ex-
quences of the total force,, is called the excluded-volume tended the semidilute region.

(EV) effect. We can define an overlap density,
The EV force plays an important role in polymer solu-

tions and this can be represented by a simple pair potential *_ N

between the beads. From a theoretical point of view, the p= 4-RS

effects of the analytical form of the EV potential on the

structural and dynami_cal properties of these systems ar\ﬁherengr is the root-mean-square radius of gyration of the
largely unknown. In this work we propose a model EV po-polymer chains ap* (which is quite close to the infinite
tential and have carried out Brownian dynami{B®) simu-  gilution value. This is the number density of beads when
lations on these model polymer solutions to examine its efznains start to overlap, providing a geometrical prescription
fect on the behavior of polymer chains in solution. Wefq the transition from dilute region to concentrated region.
explore the statistical distribution of the chain segments, therhe open structure of the chain molecules ensures that once
diffusion coefficient of the center of mass, and the viscositythe system leaves the limit of infinite dilution, the interchain

We have investigated a wide concentration range spanningeractions gradually increase so thét does not represent
either side of the chain overlap concentratiph, whichwe 5 phase transition.

will define precisely below. There are various theories attempting to explain the be-
havior of polymer solutions in these different concentration
Il. THEORETICAL BACKGROUND ranges. While theories for infinite dilute systems and the

melt are very successful, more needs to be done for the con-

Consider a solution dfl;, bead-spring chains in a volume centrated region. We summarize here some established scal-
V with spring potentialig(Al) and EV potentialie(r). Let  ing laws so that we can conveniently compare our simulation
| be the spring bond vector between any two linked beads, results with them[30]. We denote the root-mean-square
the distance between any two unlinked beads, ahél  bond length (12))*2 asb, and the position vector of bedd
—lg, with the subscript 0 indicating the natural state of theasRj . In the limit of infinite dilution we have the following
spring. The number density of the chains in the system iselations. The mean-square distance between any two beads
pcn=Nc/V and the number density of beads i mandn on the same chailsﬁm, is
=NNg,/V, whereN is the number of beads per chain.

In a @ solvent, if the many-body hydrodynamic interac- S%.=((Ry—Rm)2)x|m—n|?"b?, (1)
tions (MHI) are neglected, the chains behave like Rouse
chains. In a good solvent, however, the EV interactions argvhere v is an exponent that depends on the solvent quality.
influential. At extreme dilution, the chains are essentiallyThe mean-square radius of gyraticRﬁy,, is
isolated, and therefore intrachain EV effects dominate, al-
though chains do interact occasionally because of their open 1 N
structure. The intrachain EV effect pushes the beads away Riy= NE ((Rj=Rgm)?)cN?"b? 2
from each other, causing the chain to swell. The chains form =1
larger coils than in ad solvent. As the solution becomes
more concentrated, the chains increasingly interact with an
interpenetrate each other so that the interactions between t
beads from different chains become more important. For any
bead on a given chain it increasingly experiences the effects
of beads from other chains. As a result, the intrachain EV

hereR., is the position of the center of mass of the chain
gfined by

Z| -

Rem=

N
>R 3)
j=1



PRE 60 EFFECTS OF BEAD-BEAD INTERACTIONS ON TH. .. 5759

Turning now to dynamical properties, the self-diffusion lll. SIMULATION AND MODEL DETAILS

coefficient for the center of mass of the chally, is Our model system consists b, linear spring-and-bead

1 chains each wittN identical beads. The position vector for a
D= Iima<[Rcm(t)— Rem(0)12)<N ™o, (4)  beadj is R;, the spring bond vector between any two linked
t=0 beads isly,=R\,;— Ry, and the distance between any two
. o unlinked beads isr,=R,—R,. We assume that the
wherevp is a characteristic exponent for;,. Let 7 be the  groynian forces acting on the beads are uncorrelated and
viscosity of the solution and that of the pure solvent. For iharefore the long-time dynamics of the beads satisfy the

the intrinsic viscosity[ 7], we have position Langevin equatiof32,33. Neglecting many-body
_ hydrodynamic interactions, we have for bgaa bead posi-
[ 7]=lim 7 ”SxNvﬂbz, (5)  tion update scheme in a form convenient for simulafig4,
p—0 s At
. =R (1) — G
wherev,, is the associated scaling exponent. The values for Rj(t+AD=R;() +F;(t) l +ARP(), (12

these exponents in some well defined limits are as follows: _ o o o
where( is the friction coefficient of the bead characterizing

0.5, Rouse chaingé solveny the bead-solvent interaction, amR]-G is a random Brownian
Y~10.588, self-avoiding chainggood solvent (6) displacement acting on beathken from a Gaussian random
number generator. The thermodynamic or excluded-volume

1, Rouse model force F; on a bead is determined by the potential field of the
VD:{,,, Zimm model, () system, which here has two parts—the sum of the spring
forces from the two beads linked to it and the sum of the EV

1, Rouse model forces from all the unlinked beads around it.
Vn=[3y_1’ Zimm model. (8 Two analytic forms of spring potential were used in our

simulations. For the class of systems denoted by thekey,

The above results are calculated from self-avoidingve used a linear spring with zero natural length ilg.,
chains, for which the EV potential is taken as a delta func-=0.0 so thatAl=I and the interaction potential was,
tion. In a @ solvent, self-avoiding chains become Rouse
chains. If we take into account many-body hydrodynamic Bu(l)= ﬂ|2 (13)
interactions in self-avoiding chains, we obtain the Zimm 2
model[31]. It is important to include MHI effects to obtain

realistic values for the dynamic scaling exponents and whereH is a characteristic energy. This is the spring poten-

v If we take the value 0.6 for. the Zimm model values tial used in the Rouse model. For the class of systems de-
- . :

agree well with those obtained for real polymers, i, noted byFl_, we use a finitely extendible nonlinea'r.ellastic
=0.5,7,=0.5 in a solvent and/p=0.6,v,=0.8 in a good (FENE) spring model[35] t.hat has a nonzero equilibrium
solvent. However, the values of the static scaling expoment Natural lengthy and a maximum extensiolil pa,
agree well with real polymers under different solvent condi- H A2
tions without the need for MHI in the model. Bu(Al)=— _Alﬁwxln( 1— —ZX) (14)

In concentrated solutions, the situation becomes more 2 Al
complicated. Since the concentration fluctuations are still
large and the correlations between segments are strong,"‘éhereA,|:|,|_|0|- We used the valuesi=3.0 andAl
polymer solution in the concentrated region assumes critical 3-0o in this study. The FENE spring potential fBil sys-
behavior. The influence of the number density of beads te_ms guarantee.s that the springs do not get overstret(_:hed at
the static and dynamic properties of the polymer solution cafigh concentrations. In the limit| —0 the FENE potential
be analyzed using scaling arguments that in a good solvefigduces to a linear harmonic spring interaction potential,

give the following predictions for the density dependence ofBu(Al) - SAI% . )
the static and dynamical propertigss,30; Turning now to the nonbonded interaction, the EV poten-

tial we used had a Gaussian analytical form,

_ ngl’(p)oc< p )K 9 7r2/20_2
o Ryl 0| 7 © puan={o" 0 " s
Aem= Denlp) oc(ﬁ*) D, (100  Whereo sets the range of the potential ahdhe energy scale
Dcr(0) \p or strength of the interaction. Despite this seemingly arbi-
trary choice, it is a plausible potential form, since it allows
_ n(p) P “n 11 for progressively more difficult interpenetration of the beads
K 7s p*| (12) as the values oA and o increase. The barrier height at

=0 is finite, however. This is a realistic feature, because
where k=(1-2v)/2(8v—1), kp=(2—»)/(3v—1), and each bead represents a substantial section of a polymer chain.
k,=3/(3v—1). For »=0.6 we have xk=—0.125, xp The dimensionless exponential prefacforeflects the qual-
=—1.75, andk,= 3.75, respectively. ity of the solvent. A<O represents a system of polymer
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assume th€0-0) and(s-9 correlation functions are identical.

00— T
E We therefore have only th@-p) term left, which dominates
00 & 4 anyway with increasing concentration, since it is the most
00 A=500 I slowly decaying correlation functiof87,38,
= L 1]
< 00| /] _P "6 8
§' ! : A=25.0 /’ : nsp_;s 0 (t) t! (1 )
5 [ // ]
= 200 FENE /A where the correlation function is
~ - A=16.0 ;o
= / 1
100 L AZ8.0 /,//’_/\,/ ] G(t)= v(Jgﬁ(O)Jgﬁ(t», (19)
g ’/‘y,_g-’"’ linear ] with
00 - 1 P oot | L N : 1 L " L
0.0 1.0 2.0 3.0 4.0
rorAl 3= 3 riakig, (20)
1 |
FIG. 1. Range and strength of the spring poterdig(Al) and ]
the EV potentialg(r), whereAl=1—1,, | is the distance between fij being the force exerted on beatly beadj andrija being

two linked beads], the natural length of the spring, andthe the « component of the pair separatiof .
distance between two unlinked beads. The dashed line is the FENE y
spring potential defined by E@l4) with H=3.0, Al ,,,,=3.0, and
lo=121.0. It reduces tcusp(AI):1.5kBT(AI)2 at Al=0 represented IV. COMPUTATIONAL DETAILS
by the dot-dashed line. The solid lines represent the EV potential Bp simulations were carried out for bothO and F1
defined by Eq(15) with o=0.25 at different values ok Energy is  gystems with varying EV strengtifs different chain lengths
in kgT and the distances are Ig or b. N, and at a series of concentrations. During the simulation
. . the following quantities were set to unity for computational
chains in a bad solven# =0 the chains in & solvent, and  ;onyenjence: the thermal enerigyT, the friction coefficient
A>0 the chains in a good solvent. , £, mass of the bearh, viscosity of the solvent, the root-
The strength and the interaction range of the spring pof’nean-square bond lengttof the Rouse chain, and the natu-
tential and the EV potentidgbn the Igf) are shownin Fig. 1. spring bond length, for the F1 potentia'l model. All
We can see that the FENE potential prevents the bead-begghqr quantities are in reduced units. In such a case, the time
bond length fm”? Ibecommg too elongated. step for the simulation is proportional to the mean-square
From the positions and forces we can calculate the SP&andom displacement of a bead
cific viscosity of the system using the appropriate Green- ’

Kubo formula[36], 1 .
At=S((ARR)?). (21
n—mns B [
= = — ap af
e Ms nsV fo [(*(0)3%(1) After several exploratory simulations, we chose
B oB ((AR®)?)=0.05 for most of the concentrations. However,
—(37(0) 37 (1) ]dt, (16) for highly concentrated systems, i.ea>>35.0, ((AR%)2>

) g =0.04 was used to employ smaller time steps. The number
where V is the volume of the system anif”” is an off- ¢ chaing in the system was typicalNg,= 20 for dilute sys-
diagonal component of the momentum flux tendovhich is (o5 and set to different values froNy,= 40 to Ngy=200

— H C
related to the pressure tenddby J=VP. The(s-9 integral o concentrated systems. A typical simulation that gave ad-
involving the second term on the right-hand side representsy ate statistics lasted for about four million time steps.
the contribution from the solvent alone. There are polymer

and solvent contributions td so that, decomposed into its V. RESULTS AND DISCUSSION
components, '
p p 5 p Our model EV potential given in Eq15) had two adjust-
(3°P(0)3A(1)) = (I5F(0)IgF(1)) +(I5P(0)I5(1)) able parameters, which we call the affinity facfomnd the
B B B B potential ranger. The former determines the quality of the
+(J (0)3p (1)) +{(3"(0)3"(V)). solvent and the latter determines, among other things, the

(17)  stiffness of the chain. To examine the behavior of flexible
chains in solutions of finite concentration, we need to make
The subscripts indicates the momentum flux from the sure that the parameters are suitably chosen so that our sys-
pure solventp the contribution from the polymer potential tem represents flexible chains in a good solvent. We carried
parts, and 0 the contribution from the solvent part. Only theout exploratory simulations in the limit of infinite dilution to
first (p-p) polymer contribution in Eq(17) is important in  determine these parameters. Also, an appropriate valie of
this context, since we assume in our model that there is nthe number of beads per chain, had to be chosen such that the
correlation between the polymer and the solvent. Thereforeshains were polymerlike and yet not too computationally ex-
the (p-0) and (0-p) terms are statistically zero. Also, we can pensive to calculate.
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TABLE |. The scaling exponent,, defined in Eq.(5) for the 10.0 r ——
systems of~0 spring potential Eq(13) with different values ofA [ % A=0.0 (Rouse chains)
ando. [ SAko  eox
[ ©A=750 0=025
A o v AA=LO o=1.0
0.0 0.00 0.508:0.005 307
1.0 0.25 0.55%0.005
8.0 0.25 0.59% 0.005 .-
75.0 0.25 0.634:0.005 30t
1.0 1.00 0.7940.005
20t
The value of the scaling exponenin Eq. (2) reflects the
stiffness of the chain. In a good solvemt>0.8, indicates a
stiff chain. We performed a number of simulations using the (@)
model FO potential type with differenf and o values. The 1.0 3- . 5‘ — 1'0 2(')

values of the scaling exponentobtained from these simu-
lations with the different potential parameters are listed in
Table I. In a# solvent, the calculated value efwas, within - ——

|m~n|

statistical uncertainty, the Rouse value of 0.5, as expecte( * A=00 (Rouse caing)
For 0=0.25, as the affinity factoA increases from 1.0 to 30 | oAso e
75.0, the value o increased from 0.56 to 0.63, reflecting CA=750 0025

. . . . A=1.0 =1.0
the behavior of flexible chains as the quality of the solvent ’ °

improves. For the cas@&=1.0 and 0=1.0 we havev
=0.794, which indicates that the chains were relatively stiff. _
The effect ofa on the scaling behavior is shown clearly in éﬂ
Figs. 4a) and 2b). We usedr=0.25 in all subsequent simu-
lations to ensure sufficiently flexible chains throughout this
study.

In the following sections we first look at the influences of 1.0 -
solvent quality and chain length on the properties of the I
polymer coils in the limitp—0. Then we examine the
changes in these model polymer solutions brought about b
increasing concentration.

20 T

®)

5 10 20
N

A. Behavior at infinite dilution
FIG. 2. Effects ofu.(r) with different A and o on the scaling

, In th_e limit of infinite .dilution, i.e.,p—0, thgrg aré N0 pehavior of the=0 system in the limip— 0. (a) Root-mean-square
interactions between unlinked beads undemonditions and  gjistance between two beadsandn on the same chair§,,,, as a

a flexible polymer chain therefore assumes a Gaussian COfunction of [m—n|; (b) Radius of gyrationRy,, as a function of
formational distribution between any two beadsandn on  pumber of beads per chaiN,
the chain. In a good solvent, sinpe-0, there are no inter-
chain excluded-volume interactions so that in this limit theof the solvent became better, i.e., Asncreased, the intra-
deviation from the Gaussian chain behavior is caused solelghain EV repulsions caused the springs to expand slightly.
by intrachain EV interactions. These intrachain EV repul-The larger the value oA the greater the elongation and also,
sions push the beads further apart so that the chains forfier a given value ofA, the elongation increased with chain
larger coils than in & solvent. The longer the chain, the length, N. Nevertheless, on the whole, the increase in bond
more pronounced this intrachain EV effect. Figurés) and  lengthb was small, i.e.;<8% for theF 0 series ana<3% for
3(b) show the distribution of the radius of gyratioW(R,,,),  theF1 series. This suggests that th& spring potential was
as a function of chain length for both systems undend a more realistic representation of the polymer than the Rouse
good solvent conditions. For a given polymer the coil size ininteractions, presumably because segments of a real polymer
a good solvent is larger than in tifesolvent. This difference chain are not so easily deformed.
in size is enhanced as the number of beads per ddam Within the statistical uncertainty, the results of our simu-
creases, since the longer chains presumably have greatetions are in agreement with the scaling lajis. (1) and
scope for expansion. These effects are also clearly shown )] that describe the dimensions of the polymer coils in the
the data listed in Table II. limit of infinite dilution. The reduced quantities that repre-
First we look at the simulation results of the root-mean-sent the chain dimensions a8§.=Sce/b, S;;,.=Sme/b, and
square(rms) bond lengthb, listed in Table II. In ad solvent  RY =R, /b. These quantities for various system param-
(i.e., A=0.0) the quantityb is independent oN for both  eters are listed in Table Il, as well as the scaling expoment
classes of systems. We foutid=1.003+0.001 for theFO calculated from them. The average deviation for the values
series and=1.535+0.001 for theF1 series. As the quality of these quantities obtained from simulationti§.006. Fig-
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[ T o ] TABLE II. The scaling exponent defined in Eqs(1) and (2)
20 @ Ned ¥ A00 §osolvent . calculated from the reduced chain dimensidnss the root-mean-
I ©A=80  good-solvent ] square bond length and the reduced quantities are definegf by
=See/b, She=Sme/b, andRy,=Rg,,. r represents the correlation
coefficient of the power-law regression.

FO N 4 8 12 16 20 v r

A=0.0 b 1.002 1.002 1.002 1.003 1.004
Sie 1.732 2.664 3.321 3.872 4.356 0.500 0.9999

ee
Sre 1.000 1.731 2.232 2.669 2.972 0.497 0.9995
ngr 0.790 1.144 1.408 1.635 1.803 0.500 0.9996
A=10 b 1.010 1.016 1.019 1.021 1.022

Sie 1.748 2.722 3.464 4.097 4.658 0.531 0.9999
Ske 0.995 1756 2.299 2.752 3.154 0.533 0.9999

me

Ry 0.795 1170 1.459 1.738 1.930 0.555 0.9999

A=80 b 1.031 1.045 1.049 1.051

X S, 1.797 2.905 3.769 4.514 0.572 0.9999
L N=12 ] Sre 0.992 1816 2.435 2.961 0.571 0.9999
[ %A=0.0 B-solvent ] ngr 0.808 1.227 1.560 1.851 0.597 0.9999
08 - f%%o ©A=300 good-solvent § A=750 b 1.058 1.080 1.082
*© o 1 Sie 1.860 4.093 4.929 0.606 0.9999
oel rowo T ; She 0.982 2578 3.171 0.601 0.9999
5 o ;;: Ne36 E R;yr 0.826 1.662 1.987 0.634 0.9999
[ o %y z :
4 T B ] F1 N 12 24 36 v or
04 o % *& " %J i
Wi EY Y : A=00 b 1.534 1534 1536
£
x B x ] She 3.327 4.763 5.945 0.500 0.9998
She 2.237 3.290 4.123 0.498 0.9999
R;yr 1.412 1.988 2.454 0.502 0.9999
A=8.0 b 1.545 1.552 1.555
Sie 3.529 5.316 6.682 0.552 0.9999
She 2.322 3.584 4.564 0.552 0.9999
. o Rayr 1.480 2.180 2.728 0.557 0.9999
FIG. 3. Swelling of the polymer chains in a good solvent aspa—160 p 1555 1.556 1.560
represented by the probability distribution of the radius of gyration, S* 3.605 5448 7.010 0.573 0.9998
W(Ry,,), as a function of number of beads per chainin different Sfe 2'357 3.657 4'712 0.565 0'9999
lvents.(a) FO syst b) F1 system. me ' ' ' ' '
solvents @ FO system andb) F1 system RE, 1504 1.227 2.835 0576 0.9999
A=250 b 1.556 1.559 1.563
ures 2a) and 4a) give the root-mean-square distance be- st 3639 5518 7.149 0.581 0.9997
tween the two beadsn and_n, Snn, a@s a function of S 2.372 3.696 4.795 0.574 0.9999
|n—m|, i.e., for end-to-end dlstancﬁeejn—m|=N—l and RE, 1.516 2.255 2.883 0.584 0.9999
for middle-to-end distancg,Jn—m|=N/2—1. Figures )  a-300 gy 1557 1.560 1.564
?nd t{(b) s?'c\)lw the root-mean-square radius of gyration as a st 3.661 5578 7.199 0.583 0.9999
unction of N. Y
. . S 2.383 3.727 4.827 0.576 0.9999
For the system of typEO with N=4, the reduced middle- RTe 1523 2272 2003 0586 0.9999
to-end distancé;,. decreased slightly as the solvent became, _c " 1560 1563 1568 '
better, which indicates that the chain was perhaps too short o 3.699 5.656 7'339 0.590 0.9998
for the observance of true scaling behavior, and therefore we Sfe 2'400 3'772 4'916 0'584 0'9999
: N =8, ) X ) ) ) . .
calculatedr only using systems withi=8. For theF0 series R 1535 2300 2952 0594 0.9999

the values ofv calculated fromS}, and Sy, are statistically oy
indistinguishable, while the values ofcalculated fromRy,,

are somewhat larger, e.g., for tR@ system withA=8.0 we  |ated fromS,,, which seems to suggest that this end-chain
found »=0.597 fromRy,, but »=0.572 fromS;,. We as-  effect is more pronounced in a good solvent.

sume that this difference is caused by the limited value of the We will use the average of the values determined by
chain lengthN. As the chains became longer the differences* . s*. and R;yr as the index for solvent quality. In &
between thes values calculated frors;, and fromRg,, was  solvent, for bothFO andF1 systems, the average value:of
reduced, as was the caseFdf series. Also for thé&1 series is 0.500+ 0.003, indicating Rouse behavior. As the affinity
in good solvents, as the chains became longenthalues factor A increases we find that increases above 0.5, indi-

calculated fromS;, were seen to be larger than those calcu-cating a better solvent. THeO system withA=8.0 gives a
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on the scaling behavior of thE1l system in the limitp—0. (a)
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chain, Sy, as a function ofm—n|; (b) Radius of gyratiorRg,, as
a function of number of beads per chal,

reasonably good solvent with an average0.58+0.01. The
F1 system, usind\=25.0 also gives a reasonably good sol-
vent with an average=0.58+0.01. Close t® conditions a
small increase inA improves the solvent quality signifi-

2000 —— T T T

150.0

#N=36F1

100.0

<[Rek)-Renf )] >

W
=4
(=

L
400.0
t

1 1
0.0 200.0 600.0 800.0

FIG. 5. Mean-square displacement of the center of mass

{[Rem(t) —Rem(0)1?) as a function of timet for anFO system with
A=8.0 and ar-1 system withA=25.0 for different values oN.

EFFECTS OF BEAD-BEAD INTERACTIONS ON TH. ..

5763

TABLE lll. The diffusion coefficient of the center of magx,,
defined by Eq(4) as a function oN andA. DR5=1/N is the Rouse
value.

FO N 4 8 12 16 20
DR 0.250 0.125 0.0833 0.0625 0.0500
A=0.0 0.256 0.127 0.0832 0.0628 0.0496
A=1.0 0.250 0.126 0.0837 0.0619  0.0497
A=8.0 0.251 0.131 0.0841 0.0631
A=75.0 0.245 0.0840 0.0624

F1 N 12 24 36
DR 0.0833 0.0417 0.0278
A=8.0 0.0838 0.0419 0.0281
A=16.0 0.0829 0.0423 0.0288
A=25.0 0.0836 0.0416 0.0275
A=30.0 0.0832 0.0417 0.0279
A=50.0 0.0833 0.0419 0.0285

cantly, while in the good solvent range a similar increase in
A causes only a small increase in the valuevof

Figure 5 shows the mean-square displacement of the cen-
ter of mass[ Rm(t) — Ren(0)1%) as function of time for two
different systemsfF0 with A=8.0 andF1 with A=25.0.
The self-diffusion coefficienD.,, was calculated from Eq.
(4) and they show @, =N~! dependence for all the sys-
tems. The values oD, obtained from the simulations are
listed in Table lll. In a@ solvent, because we are in the
free-draining limit, v, takes the form M, the value of
Rouse chains, as expected. Significantly, this data also shows
that solvent quality does not influence tiNs * dependence.
Moreover, despite the fact that the bond lengtbf F1 sys-
tem is longer than that df0 system with the samH, the
value of D, for the two systems are, within statistical un-
certainty, the same. These results show that in the infinite
dilution limit the diffusion behavior of the center of mass is
independent of the interaction law between the beads.

The scaling relations between intrinsic viscodity] and
number of beads per chah given by Eq.(5) for different
interaction parameters are shown in Fig. 6. The values of the

4.0 T ————
L % A=00
xA=10 FO
+A=80 FO
20 | oa=750 FO
OA=80 Fl
OA=16.0 Fl
©A=250 F1
1.0 | vA=300 F1 i
b aA=s00 1 E
L)
1= L
e
05
03
02T
0.1
3 40

FIG. 6. The intrinsic viscosity#] as a function oN in different
solvents for boti=0 andF1 systems.
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TABLE IV. The scaling exponent,, defined in Eq.(5) for the L B B B
intrinsic viscosity.Av,=v,(A)—v,(0).
1.0 ¢ & @ % R -
FO F1 i -8 Feen g 0°
A v, Av, A v, Av, r ¢
0.0 1.01 0.00 0.0 0.99 0.0 2
1.0 1.14 0.13 8.0 1.18 0.19 =
8.0 1.29 0.28 16.0 1.26 0.27 s
75.0 1.41 0.40 25.0 1.28 0.29 05 oo I
30.0 1.29 0.30 Z::ﬁgg g:
50.0 1.31 0.31 L +ass80 FO ¢
xA=40 FO
H H H FEETI | L0l M APET | PRI R AT | P T
scaling exponent, were calculated and they are listed in 0.3 = o e s T

Table IV. The scaling exponent,=1, which is expected,
since we are in the free-draining limit. Although the absolute
valyes ofv, are therefore .physically unrealistic, it is.inter- FIG. 7. Normalized radius of gyration ag(p)
esting to look at the quantity»,=v,—v,(6). For flexible =R (p)/R,,(0) as a function of number density of beaglsn

real polymersy,, varies in the range 0.5-0.8 in good solventsdifferent solvents for both thE0 andF1 systems witiN=12.

with »,(6)=0.5 in ¢ solvent, therefore giving\v, in the

range 0.6-0.3. Our results for both series fall in this range, gions clearly, and below we demonstrate how the key prop-
which suggests that in the infinite dilution limit the quantity erties change as functions of concentration. However, we
Av, is only weakly dependent on the presence of manymust bear in mind that in our model the entanglement effect
body hydrodynamic interactions, and the MHI contribution (which is caused by physical connectivity of the beads on a
to v, from a polymer chain in a good solvent is the similar to chain is not included completely and in the highly concen-

that for a polymer in & solvent. trated region we expect the polymers to behave like Rouse
chains, which is acceptable for the chain conformational dis-
B. Behavior at finite concentrations tribution, but not for the dynamical properties.

At finite polymer concentration, the interchain EV forces
become increasingly important. There are three distinguish-
able regimes. In the dilute region, because of the interchain The change in the size of a typical polymer chain as con-
repulsions, the polymer chains avoid overlap on approach bgentration increases is conveniently characterized by the ra-
shrinking into slightly smaller coils. As a result, the poly- tio ag,(p)=Rg,(p)/Rgy(0), which is shown as a function
mers behave like isolated coils that only interact occasionof number density of beagsin Fig. 7. First we consider the
ally. In the concentrated region, the system becomes morel class system in a moderate solvérg., A=8.0). In the
crowded and the coils are forced to overlap for extendedlilute region p<2.0), the radius of gyration of the cdRy,
periods. They begin to interpenetrate, which reduces the n&trops steadily ag increases. Entering the concentrated re-
effect of the intrachain repulsion energy. In the highly con-gion (ca. 2.0<p<15.0, Ry, decreases more dramatically
centrated region, the density fluctuations are greatly supand follows the scaling law gy, p*. In the highly concen-
pressed and each bead is surrounded by an increasing nutrated region,p>15.0, Ry, increaseswith p, indicating a
ber of beads from other chains, reducing its ability toreturn to Rouse-like conformational statistics. This is the
distinguish between beads from the same chain and thosgeneral pattern for the1l system in different solvents and,
from other chains. The segment-segment interactions tend fo fact, in better solvent§.e., increasing magnitude & the
become “balanced out” so that when the system reaches theéhanges are even more pronouncedy., forA=16 and 25
melt state the chains become conformationally ideal agairand takes place at lower for larger A values. For thé=0
Our simulation results show these three concentration resystem, sincd =0, the concentrated region is more ex-

1. Radius of gyration

TABLE V. The scaling exponents gf in the concentrated region defined by E@—(11) in different
solvents.r is the correlation coefficient of the power-law regressiog,=p”, acm<p*P, 1,%p*7, and ng,

o p’se,
K r Kp r Ky r Ksp r
FO A=4.0 —-0.08 —0.998 0.44 0.999 0.89 0.998
A=8.0 —-0.30 0.998 -0.17 0.996 0.54 0.998 0.85 0.999
F1 A=8.0 —-0.05 —-0.994 -0.16 —0.999 0.90 0.999 1.06 0.999

A=16.0 -0.27 —0.999 -0.41 —0.999 1.00 0.999 1.16 0.999
A=25.0 —0.32 —0.999 -0.77 —0.996 1.17 0.999 1.26 0.998
A=50.0 —-0.31 —0.995 —1.70 —0.998 1.32 0.994 1.45 0.996
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TABLE VI. The bond lengthb as a function ofp for the F1

lIéh""l""l""l"
system withA=25.0.

—— Rouse chains
©p=0.05

5535%0 Op=2.0

23 op=3.0 -

g&&% AP=7.0
*P=10.0

—0 0.05 0.10 0.25 0.50
1.5561 1.5531 1.5502 1.5410 1.5265
1.00 2.00 3.00 4.00 5.00
1.5030 1.4461 1.3510 1.2255 1.1098
7.00 10.00 15.00 20.00 35.00
0.9773 0.9261 0.6730 1.4690 1.4856

T T®™ T

W(Rey)

0.5

more steeply in the concentrated region, whegg, follows
the scaling law,a < p“P. The values of the scaling expo-
0.0 el ; nent kp obtained from the simulation data are presented in
0.0 1.0 2.0 3.0 4.0 Table V. Again, the value of the exponent depends on sol-
Reyr vent quality, with a better solvent giving a more negative
value ofkp . In a good solvent the value &fy predicted by
_ FIG. 8. Distribution of the _radius of gyratioW(Rg,,) as a func- scaling theory is—1.75, which has been confirmed by ex-
tion of p for the F1 system withA=50.0 andN=12. periment[44]. One of ourF1 systems withA=50.0, has a
similar valuexp= —1.70. In the highly concentrated region,
tended than that of th&1 system and we do not see an since there are no topological constraints in our systems, the
increase in the value afy,(p) in the density range covered value of D, starts to increase as a result of the decreasing
in our simulations. impact of the EV effect, approaching the value characteristic
Both of the potential formsF0O and F1, show scaling of a Rouse chain. This unrealistic feature is again caused by
behavior in the concentrated region with the analytic form,the lack of physical entanglement.
agy>*p”. The scaling exponemt depends on solvent quality,
values of which are listed in Table V. In good solvents, the 3. Viscosity
scaling theory predicts that=(1—-2v)/2(3v—1)=—-1.25 , ,
[30]. Unfortunately, there are only a few experimental results | "€ experimental results for various real polymer-solvent
available. Some confirm the theof$0,41], whereas others SYStems show that the relative viscosify can be described
give a smaller valuec=—0.08 [42]. Our results show a bPY @ stretched exponential function @f, =exp@p), in the
much faster decrease Ry, as concentration increases and dilute region, where is a constant typical of each polymer,
the data suggest that=»/2~0.3. The simulations of Brow- and by a power lawy, ="~ in the concentrated regid89].
stow and Drewmak, also with only EV repulsion, gaxe The values ofyp, obtained from our simulations as function

—0.2[43]. We suggest that this more dramatic decrease i?f the coil-overlap parametgr]p are shown in Fig. 10. We

chain dimension with increasing concentration of the solu€Produced the experimental trends in that the data in the

tion is caused by the lack of topological entanglement in oudilute region folloyv a stretched exponential form and in the
model. Additional topological constraints would restrict the CONcentrated region a power law. Table V shows that the
degree of shrinkage of the chains with increasing concentra/&/ué of exponent, depends on solvent quality. In the
tion. highly concentrated region, becomes less sensitive po

The return to a Rouse-like chain conformational distribu-
tion in the concentrated region for thel system can be seen T
in more detail in the change in the probability distribution
function of Ry, with p as shown in Fig. 8. Ap increases the
polymer coils become smaller and the distribution curve [ 2, T o© .
shifts to the left until the system enters the highly concen- 05| e o%\: +
trated region where the distribution curve starts to move back <
to the right toward the distribution of a flexible colil in @& :SE; 03l .

3

solvent.
The rms bond lengttb also changes with increasing 02t

. . OA=80 F1

Table VI gives the value db as a function ofp for the F1 OA=160 FI

system withA=25.0. As we can sedy decreases ag in- Jpuod

creases, then achieves a minimum and begins to increase 01 [ +aso Fo

. . . . . . x A=4.0 FO
again, indicating the return to Rouse chain behavior.

2. Self-diffusion coefficient 10 10

The ratio of the self-diffusion coefficient to its value in
the zero density limita,,, as a function ofp is shown in FIG. 9. Center-of-mass self-diffusion coefficiédt,, as a func-
Fig. 9. Below the highly concentrated region,@imcreases, tion of number density of beagsin different solvents for both the
D.m, decreases, gradually at first in the dilute region and theiF0 andF1 systems witiN=12.
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FIG. 12. EV contribution to viscosityy.,, defined by Eq(23),
as a function of coil-overlap parameigry] for the F1 system with
N=12 in different solvents.

FIG. 10. Relative viscosity;, as a function of coil-overlap pa-
rameterp| 7] for the F1 system withN=12 in different solvents.

Figure 11 shows the specific viscosityy,, for the F1
system withN—12 as a function of coil-overlap parameter, where the Rouse valuesrf’: Nb?/36. Since the bond length
[7]p, which is equivalent tp/p*. The thick line in the fig- b is a function ofp, nsps also depends op. Figure 12 shows
ure is the relationshipys,=[ 7]p that corresponds to Rouse 7., as function of the coil-overlap parameter. In the dilute
behavior. In the dilute region the chains behave essentially aggion the interchain EV forces are small and the viscosity of
Rouse chains. As the solution becomes more concentratethe system is close to the Rouse value. In the concentrated
deviations begin to occutThe crossover point from the di- region the interchain EV forces dominate and the viscosity
lute to the concentrated region is abqiity]~0.6). In the increases markedly with density. As the systems become
concentrated region the scaling law is found to kg,  highly concentrated, the net effects of the EV forces begin to
«([ n]p)"se. The values ofkg, obtained from the simulation disappear and viscosity decreases toward that of the Rouse
data are given in Table V. The better the solvent the largechain again. This latter unrealistic feature is again caused by
the value ofkg,, although these values are much smallerpartially neglecting the topological constraints of the chains
than the value 3/8—1=3.75 predicted by scaling theory using this coarse-grained model.
[30]. In the highly concentrated regiom, decreases, as the
net effects of the excluded-volume repulsion decreases, and
we return to Rouse-like behavior.

The effect of excluded-volume forces on the viscosity of A model excluded-volume potential of the forfug(r)
the solution can be seen in the quantity,, a measure of =Aexp(—r%20?) with ¢=0.25 and various values & is

VI. CONCLUSIONS

the excluded-volume contribution to the viscosity, shown to give a reasonable description of the segment-
B RS segment interactions for flexible polymers in solution over a
Nev= (755~ Msp)/pL 7], (220 wide concentration range. The simulation results give a clear
, picture of how the segment-segment interactions contribute
0z to both static and dynamical properties of a model polymer
C ] solution and how these properties change as the system be-
ey o S ] comes increasingly concentrated. Comparisons with experi-
- Daso N O°o . : ments reveal the strengths and limitations of our model.
1 AA=50.0 In the limit of infinite dilution the static and dynamical

10 | - R . . . .
: ] properties agree quite well with theoretical predictions. In

addition, the model exhibits the correct behavior for the
chain dimensions in the whole concentration range &%
creases. In the dilute region the coil size decreases slowly, in
10° | 4 the concentrated region the shrinkage of the coil follows a
i ] scaling law, and in the highly concentrated region the coil
size begins to increase again. The dynamical properties, the
self-diffusion coefficient of the center of masd,,, the
relative viscosity 7., and the specific viscosity, also
! 10 10 —_ ‘1'02 s_how the corre_zct trends in both dilut_e and concentrated_ re-
ol gions. In the hlghly concen_trated region, howev.er,. therg is a
return to Rouse-like behavior—which is not realistic. This is
FIG. 11. Specific viscosityys, as a function of coil-overlap ~a deficiency of the coarse-graining procedure which we sug-
parametep[ 7] for an F1 system withN=12 in different solvents. gest fails to capture important aspects of the polymer en-

n,

il N M |
0 1
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tanglement, which would require a model including physicaloriginating in the uncrossability of the chains, which domi-
connectivity of the beads. nates the dynamical behavior in the very concentrated state.
We conclude that the coarse-grained segment-segment ilfevertheless, our model does have many satisfactory fea-

teractions capture quite well the static properties of real polytures, bearing in mind its simplicity and computational effi-

mer chains in the whole concentration range. Although thesiency, and should form the basis for future refinements.
contraction of polymer coils in the concentrated region in our

model is more extreme than in a real polymer solution. This
indicates that in the concentrated region the topological con-
straints or entanglements of chains present should restrict
significantly the decrease of coil size with increasing concen- C.X. thanks the Biotechnology and Biological Sciences
tration, which will limit the ability of the polymer molecules Research Council of Great BritaifBB-SRQ for financial
to contract to avoid the interchain excluded volume repul-support and for the funding of DIGITAL AlphaStations
sions. workstations used to carry out some of these simulations.
The entanglement effects influence the dynamical behawseful discussions with Dr. R. K. Richardson and Dr. A.
ior of the chains in the concentrated region and dominatédaque, Department of Food Technology, Cranfield Univer-
those in the highly concentrated region. In real polymers theity (Silsoe Campusare gratefully acknowledged. Some cal-
entanglement makeB ., decrease more dramatically with culations were carried out on the DIGITAL computer CO-
increasing concentration. It also makgs, increase faster in  LUMBUS at the Rutherford Laboratory, U.K., funded by the
the concentrated region and keep increasing in the highl¥Engineering and Physical Sciences Research Council of
concentrated region. Clearly, excluded-volume aspects of th@reat Britain(EPSRQ via a grant from the U.K. Computa-
present model do not represent the real entanglement effedisnal Chemistry Working Party.
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